Will remove unselected variables from the results.
To remove the intercept, use tidy_remove_intercept().
Usage
tidy_select_variables(x, include = everything(), model = tidy_get_model(x))Arguments
- x
- ( - data.frame)
 A tidy tibble as produced by- tidy_*()functions.
- include
- ( - tidy-select)
 Variables to include. Default is- everything(). See also- all_continuous(),- all_categorical(),- all_dichotomous()and- all_interaction().
- model
- (a model object, e.g. - glm)
 The corresponding model, if not attached to- x.
Value
The x tibble limited to the included variables (and eventually the intercept),
sorted according to the include parameter.
Details
If the variable column is not yet available in x,
tidy_identify_variables() will be automatically applied.
See also
Other tidy_helpers:
tidy_add_coefficients_type(),
tidy_add_contrasts(),
tidy_add_estimate_to_reference_rows(),
tidy_add_header_rows(),
tidy_add_n(),
tidy_add_pairwise_contrasts(),
tidy_add_reference_rows(),
tidy_add_term_labels(),
tidy_add_variable_labels(),
tidy_attach_model(),
tidy_disambiguate_terms(),
tidy_group_by(),
tidy_identify_variables(),
tidy_plus_plus(),
tidy_remove_intercept()
Examples
df <- Titanic |>
  dplyr::as_tibble() |>
  dplyr::mutate(Survived = factor(Survived))
res <-
  glm(Survived ~ Class + Age * Sex, data = df, weights = df$n, family = binomial) |>
  tidy_and_attach() |>
  tidy_identify_variables()
res
#> # A tibble: 7 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA    2.18      0.176    12.4  
#> 2 Class2nd  Class    character categor…           4   -1.03      0.200    -5.17 
#> 3 Class3rd  Class    character categor…           4   -1.81      0.176   -10.3  
#> 4 ClassCrew Class    character categor…           4   -0.803     0.160    -5.03 
#> 5 AgeChild  Age      character dichoto…           2   -0.110     0.335    -0.328
#> 6 SexMale   Sex      character dichoto…           2   -2.62      0.151   -17.3  
#> 7 AgeChild… Age:Sex  NA        interac…          NA    1.90      0.433     4.39 
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables()
#> # A tibble: 7 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA    2.18      0.176    12.4  
#> 2 Class2nd  Class    character categor…           4   -1.03      0.200    -5.17 
#> 3 Class3rd  Class    character categor…           4   -1.81      0.176   -10.3  
#> 4 ClassCrew Class    character categor…           4   -0.803     0.160    -5.03 
#> 5 AgeChild  Age      character dichoto…           2   -0.110     0.335    -0.328
#> 6 SexMale   Sex      character dichoto…           2   -2.62      0.151   -17.3  
#> 7 AgeChild… Age:Sex  NA        interac…          NA    1.90      0.433     4.39 
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = "Class")
#> # A tibble: 4 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA    2.18      0.176     12.4 
#> 2 Class2nd  Class    character categor…           4   -1.03      0.200     -5.17
#> 3 Class3rd  Class    character categor…           4   -1.81      0.176    -10.3 
#> 4 ClassCrew Class    character categor…           4   -0.803     0.160     -5.03
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = -c("Age", "Sex"))
#> # A tibble: 5 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA    2.18      0.176     12.4 
#> 2 Class2nd  Class    character categor…           4   -1.03      0.200     -5.17
#> 3 Class3rd  Class    character categor…           4   -1.81      0.176    -10.3 
#> 4 ClassCrew Class    character categor…           4   -0.803     0.160     -5.03
#> 5 AgeChild… Age:Sex  NA        interac…          NA    1.90      0.433      4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = starts_with("A"))
#> # A tibble: 3 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA    2.18      0.176    12.4  
#> 2 AgeChild  Age      character dichoto…           2   -0.110     0.335    -0.328
#> 3 AgeChild… Age:Sex  NA        interac…          NA    1.90      0.433     4.39 
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = all_categorical())
#> # A tibble: 6 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA    2.18      0.176    12.4  
#> 2 Class2nd  Class    character categor…           4   -1.03      0.200    -5.17 
#> 3 Class3rd  Class    character categor…           4   -1.81      0.176   -10.3  
#> 4 ClassCrew Class    character categor…           4   -0.803     0.160    -5.03 
#> 5 AgeChild  Age      character dichoto…           2   -0.110     0.335    -0.328
#> 6 SexMale   Sex      character dichoto…           2   -2.62      0.151   -17.3  
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = all_dichotomous())
#> # A tibble: 3 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA    2.18      0.176    12.4  
#> 2 AgeChild  Age      character dichoto…           2   -0.110     0.335    -0.328
#> 3 SexMale   Sex      character dichoto…           2   -2.62      0.151   -17.3  
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = all_interaction())
#> # A tibble: 2 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA     2.18     0.176     12.4 
#> 2 AgeChild… Age:Sex  NA        interac…          NA     1.90     0.433      4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(
  include = c("Age", all_categorical(dichotomous = FALSE), all_interaction())
)
#> # A tibble: 6 × 11
#>   term      variable var_class var_type var_nlevels estimate std.error statistic
#>   <chr>     <chr>    <chr>     <chr>          <int>    <dbl>     <dbl>     <dbl>
#> 1 (Interce… (Interc… NA        interce…          NA    2.18      0.176    12.4  
#> 2 AgeChild  Age      character dichoto…           2   -0.110     0.335    -0.328
#> 3 Class2nd  Class    character categor…           4   -1.03      0.200    -5.17 
#> 4 Class3rd  Class    character categor…           4   -1.81      0.176   -10.3  
#> 5 ClassCrew Class    character categor…           4   -0.803     0.160    -5.03 
#> 6 AgeChild… Age:Sex  NA        interac…          NA    1.90      0.433     4.39 
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>