Will remove unselected variables from the results.
To remove the intercept, use tidy_remove_intercept()
.
Usage
tidy_select_variables(x, include = everything(), model = tidy_get_model(x))
Arguments
- x
(
data.frame
)
A tidy tibble as produced bytidy_*()
functions.- include
(
tidy-select
)
Variables to include. Default iseverything()
. See alsoall_continuous()
,all_categorical()
,all_dichotomous()
andall_interaction()
.- model
(a model object, e.g.
glm
)
The corresponding model, if not attached tox
.
Value
The x
tibble limited to the included variables (and eventually the intercept),
sorted according to the include
parameter.
Details
If the variable
column is not yet available in x
,
tidy_identify_variables()
will be automatically applied.
See also
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_header_rows()
,
tidy_add_n()
,
tidy_add_pairwise_contrasts()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_attach_model()
,
tidy_disambiguate_terms()
,
tidy_identify_variables()
,
tidy_plus_plus()
,
tidy_remove_intercept()
Examples
df <- Titanic |>
dplyr::as_tibble() |>
dplyr::mutate(Survived = factor(Survived))
res <-
glm(Survived ~ Class + Age * Sex, data = df, weights = df$n, family = binomial) |>
tidy_and_attach() |>
tidy_identify_variables()
res
#> # A tibble: 7 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 Class2nd Class character categor… 4 -1.03 0.200 -5.17
#> 3 Class3rd Class character categor… 4 -1.81 0.176 -10.3
#> 4 ClassCrew Class character categor… 4 -0.803 0.160 -5.03
#> 5 AgeChild Age character dichoto… 2 -0.110 0.335 -0.328
#> 6 SexMale Sex character dichoto… 2 -2.62 0.151 -17.3
#> 7 AgeChild… Age:Sex NA interac… NA 1.90 0.433 4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables()
#> # A tibble: 7 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 Class2nd Class character categor… 4 -1.03 0.200 -5.17
#> 3 Class3rd Class character categor… 4 -1.81 0.176 -10.3
#> 4 ClassCrew Class character categor… 4 -0.803 0.160 -5.03
#> 5 AgeChild Age character dichoto… 2 -0.110 0.335 -0.328
#> 6 SexMale Sex character dichoto… 2 -2.62 0.151 -17.3
#> 7 AgeChild… Age:Sex NA interac… NA 1.90 0.433 4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = "Class")
#> # A tibble: 4 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 Class2nd Class character categor… 4 -1.03 0.200 -5.17
#> 3 Class3rd Class character categor… 4 -1.81 0.176 -10.3
#> 4 ClassCrew Class character categor… 4 -0.803 0.160 -5.03
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = -c("Age", "Sex"))
#> # A tibble: 5 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 Class2nd Class character categor… 4 -1.03 0.200 -5.17
#> 3 Class3rd Class character categor… 4 -1.81 0.176 -10.3
#> 4 ClassCrew Class character categor… 4 -0.803 0.160 -5.03
#> 5 AgeChild… Age:Sex NA interac… NA 1.90 0.433 4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = starts_with("A"))
#> # A tibble: 3 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 AgeChild Age character dichoto… 2 -0.110 0.335 -0.328
#> 3 AgeChild… Age:Sex NA interac… NA 1.90 0.433 4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = all_categorical())
#> # A tibble: 6 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 Class2nd Class character categor… 4 -1.03 0.200 -5.17
#> 3 Class3rd Class character categor… 4 -1.81 0.176 -10.3
#> 4 ClassCrew Class character categor… 4 -0.803 0.160 -5.03
#> 5 AgeChild Age character dichoto… 2 -0.110 0.335 -0.328
#> 6 SexMale Sex character dichoto… 2 -2.62 0.151 -17.3
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = all_dichotomous())
#> # A tibble: 3 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 AgeChild Age character dichoto… 2 -0.110 0.335 -0.328
#> 3 SexMale Sex character dichoto… 2 -2.62 0.151 -17.3
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(include = all_interaction())
#> # A tibble: 2 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 AgeChild… Age:Sex NA interac… NA 1.90 0.433 4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
res |> tidy_select_variables(
include = c("Age", all_categorical(dichotomous = FALSE), all_interaction())
)
#> # A tibble: 6 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 AgeChild Age character dichoto… 2 -0.110 0.335 -0.328
#> 3 Class2nd Class character categor… 4 -1.03 0.200 -5.17
#> 4 Class3rd Class character categor… 4 -1.81 0.176 -10.3
#> 5 ClassCrew Class character categor… 4 -0.803 0.160 -5.03
#> 6 AgeChild… Age:Sex NA interac… NA 1.90 0.433 4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>