Will remove terms where var_type == "intercept"
.
Usage
tidy_remove_intercept(x, model = tidy_get_model(x))
Details
If the variable
column is not yet available in x
,
tidy_identify_variables()
will be automatically applied.
See also
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_header_rows()
,
tidy_add_n()
,
tidy_add_pairwise_contrasts()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_attach_model()
,
tidy_disambiguate_terms()
,
tidy_identify_variables()
,
tidy_plus_plus()
,
tidy_select_variables()
Examples
df <- Titanic |>
dplyr::as_tibble() |>
dplyr::mutate(Survived = factor(Survived))
glm(Survived ~ Class + Age + Sex, data = df, weights = df$n, family = binomial) |>
tidy_and_attach() |>
tidy_remove_intercept()
#> # A tibble: 5 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 Class2nd Class character categor… 4 -1.02 0.196 -5.19
#> 2 Class3rd Class character categor… 4 -1.78 0.172 -10.4
#> 3 ClassCrew Class character categor… 4 -0.858 0.157 -5.45
#> 4 AgeChild Age character dichoto… 2 1.06 0.244 4.35
#> 5 SexMale Sex character dichoto… 2 -2.42 0.140 -17.2
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>