Add an estimate value to references rows for categorical variables
Source:R/tidy_add_estimate_to_reference_rows.R
      tidy_add_estimate_to_reference_rows.RdFor categorical variables with a treatment contrast
(stats::contr.treatment()) or a SAS contrast (stats::contr.SAS()),
will add an estimate equal to 0 (or 1 if exponentiate = TRUE)
to the reference row.
Usage
tidy_add_estimate_to_reference_rows(
  x,
  exponentiate = attr(x, "exponentiate"),
  conf.level = attr(x, "conf.level"),
  model = tidy_get_model(x),
  quiet = FALSE
)Arguments
- x
- ( - data.frame)
 A tidy tibble as produced by- tidy_*()functions.
- exponentiate
- ( - logical)
 Whether or not to exponentiate the coefficient estimates. It should be consistent with the original call to- broom::tidy()
- conf.level
- ( - numeric)
 Confidence level, by default use the value indicated previously in- tidy_and_attach(), used only for sum contrasts.
- model
- (a model object, e.g. - glm)
 The corresponding model, if not attached to- x.
- quiet
- ( - logical)
 Whether- broom.helpersshould not return a message when requested output cannot be generated. Default is- FALSE.
Details
For categorical variables with a sum contrast (stats::contr.sum()),
the estimate value of the reference row will be equal to the sum of
all other coefficients multiplied by -1 (eventually exponentiated if
exponentiate = TRUE), and obtained with emmeans::emmeans().
The emmeans package should therefore be installed.
For sum contrasts, the model coefficient corresponds
to the difference of each level with the grand mean.
For sum contrasts, confidence intervals and p-values will also
be computed and added to the reference rows.
For other variables, no change will be made.
If the reference_row column is not yet available in x,
tidy_add_reference_rows() will be automatically applied.
See also
Other tidy_helpers:
tidy_add_coefficients_type(),
tidy_add_contrasts(),
tidy_add_header_rows(),
tidy_add_n(),
tidy_add_pairwise_contrasts(),
tidy_add_reference_rows(),
tidy_add_term_labels(),
tidy_add_variable_labels(),
tidy_attach_model(),
tidy_disambiguate_terms(),
tidy_group_by(),
tidy_identify_variables(),
tidy_plus_plus(),
tidy_remove_intercept(),
tidy_select_variables()
Examples
# \donttest{
  df <- Titanic |>
    dplyr::as_tibble() |>
    dplyr::mutate(dplyr::across(where(is.character), factor))
  glm(
    Survived ~ Class + Age + Sex,
    data = df, weights = df$n, family = binomial,
    contrasts = list(Age = contr.sum, Class = "contr.SAS")
  ) |>
    tidy_and_attach(exponentiate = TRUE) |>
    tidy_add_reference_rows() |>
    tidy_add_estimate_to_reference_rows()
#> # A tibble: 9 × 14
#>   term        variable   var_class var_type var_nlevels contrasts contrasts_type
#>   <chr>       <chr>      <chr>     <chr>          <int> <chr>     <chr>         
#> 1 (Intercept) (Intercep… NA        interce…          NA NA        NA            
#> 2 Class1st    Class      factor    categor…           4 contr.SAS treatment     
#> 3 Class2nd    Class      factor    categor…           4 contr.SAS treatment     
#> 4 Class3rd    Class      factor    categor…           4 contr.SAS treatment     
#> 5 ClassCrew   Class      factor    categor…           4 contr.SAS treatment     
#> 6 Age1        Age        factor    dichoto…           2 contr.sum sum           
#> 7 Age2        Age        factor    dichoto…           2 contr.sum sum           
#> 8 SexFemale   Sex        factor    dichoto…           2 contr.tr… treatment     
#> 9 SexMale     Sex        factor    dichoto…           2 contr.tr… treatment     
#> # ℹ 7 more variables: reference_row <lgl>, estimate <dbl>, std.error <dbl>,
#> #   statistic <dbl>, p.value <dbl>, conf.low <dbl>, conf.high <dbl>
  glm(
    response ~ stage + grade * trt,
    gtsummary::trial,
    family = binomial,
    contrasts = list(
      stage = contr.treatment(4, base = 3),
      grade = contr.treatment(3, base = 2),
      trt = contr.treatment(2, base = 2)
    )
  ) |>
    tidy_and_attach() |>
    tidy_add_reference_rows() |>
    tidy_add_estimate_to_reference_rows()
#> # A tibble: 12 × 14
#>    term        variable  var_class var_type var_nlevels contrasts contrasts_type
#>    <chr>       <chr>     <chr>     <chr>          <int> <chr>     <chr>         
#>  1 (Intercept) (Interce… NA        interce…          NA NA        NA            
#>  2 stage1      stage     factor    categor…           4 contr.tr… treatment     
#>  3 stage2      stage     factor    categor…           4 contr.tr… treatment     
#>  4 stage3      stage     factor    categor…           4 contr.tr… treatment     
#>  5 stage4      stage     factor    categor…           4 contr.tr… treatment     
#>  6 grade1      grade     factor    categor…           3 contr.tr… treatment     
#>  7 grade2      grade     factor    categor…           3 contr.tr… treatment     
#>  8 grade3      grade     factor    categor…           3 contr.tr… treatment     
#>  9 trt1        trt       character dichoto…           2 contr.SAS treatment     
#> 10 trt2        trt       character dichoto…           2 contr.SAS treatment     
#> 11 grade1:trt1 grade:trt NA        interac…          NA NA        NA            
#> 12 grade3:trt1 grade:trt NA        interac…          NA NA        NA            
#> # ℹ 7 more variables: reference_row <lgl>, estimate <dbl>, std.error <dbl>,
#> #   statistic <dbl>, p.value <dbl>, conf.low <dbl>, conf.high <dbl>
# }