Skip to contents

To facilitate the use of broom helpers with pipe, it is recommended to attach the original model as an attribute to the tibble of model terms generated by broom::tidy().

Usage

tidy_attach_model(x, model, .attributes = NULL)

tidy_and_attach(
  model,
  tidy_fun = tidy_with_broom_or_parameters,
  conf.int = TRUE,
  conf.level = 0.95,
  exponentiate = FALSE,
  model_matrix_attr = TRUE,
  ...
)

tidy_get_model(x)

tidy_detach_model(x)

Arguments

x

(data.frame)
A tidy tibble as produced by tidy_*() functions.

model

(a model object, e.g. glm)
A model to be attached/tidied.

.attributes

(list)
Named list of additional attributes to be attached to x.

tidy_fun

(function)
Option to specify a custom tidier function.

conf.int

(logical)
Should confidence intervals be computed? (see broom::tidy())

conf.level

(numeric)
Level of confidence for confidence intervals (default: 95%).

exponentiate

(logical)
Whether or not to exponentiate the coefficient estimates. This is typical for logistic, Poisson and Cox models, but a bad idea if there is no log or logit link; defaults to FALSE.

model_matrix_attr

(logical)
Whether model frame and model matrix should be added as attributes of model (respectively named "model_frame" and "model_matrix") and passed through

...

Other arguments passed to tidy_fun().

Details

tidy_attach_model() attach the model to a tibble already generated while tidy_and_attach() will apply broom::tidy() and attach the model.

Use tidy_get_model() to get the model attached to the tibble and tidy_detach_model() to remove the attribute containing the model.

Examples

mod <- lm(Sepal.Length ~ Sepal.Width + Species, data = iris)
tt <- mod |>
  tidy_and_attach(conf.int = TRUE)
tt
#> # A tibble: 4 × 7
#>   term              estimate std.error statistic  p.value conf.low conf.high
#>   <chr>                <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)          2.25      0.370      6.09 9.57e- 9    1.52       2.98
#> 2 Sepal.Width          0.804     0.106      7.56 4.19e-12    0.593      1.01
#> 3 Speciesversicolor    1.46      0.112     13.0  3.48e-26    1.24       1.68
#> 4 Speciesvirginica     1.95      0.100     19.5  2.09e-42    1.75       2.14
tidy_get_model(tt)
#> 
#> Call:
#> lm(formula = Sepal.Length ~ Sepal.Width + Species, data = iris)
#> 
#> Coefficients:
#>       (Intercept)        Sepal.Width  Speciesversicolor   Speciesvirginica  
#>            2.2514             0.8036             1.4587             1.9468  
#>