To facilitate the use of broom helpers with pipe, it is recommended to
attach the original model as an attribute to the tibble of model terms
generated by broom::tidy()
.
Usage
tidy_attach_model(x, model, .attributes = NULL)
tidy_and_attach(
model,
tidy_fun = tidy_with_broom_or_parameters,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
model_matrix_attr = TRUE,
...
)
tidy_get_model(x)
tidy_detach_model(x)
Arguments
- x
(
data.frame
)
A tidy tibble as produced bytidy_*()
functions.- model
(a model object, e.g.
glm
)
A model to be attached/tidied.- .attributes
(
list
)
Named list of additional attributes to be attached tox
.- tidy_fun
(
function
)
Option to specify a custom tidier function.- conf.int
(
logical
)
Should confidence intervals be computed? (seebroom::tidy()
)- conf.level
(
numeric
)
Level of confidence for confidence intervals (default: 95%).- exponentiate
(
logical
)
Whether or not to exponentiate the coefficient estimates. This is typical for logistic, Poisson and Cox models, but a bad idea if there is no log or logit link; defaults toFALSE
.- model_matrix_attr
(
logical
)
Whether model frame and model matrix should be added as attributes ofmodel
(respectively named"model_frame"
and"model_matrix"
) and passed through- ...
Other arguments passed to
tidy_fun()
.
Details
tidy_attach_model()
attach the model to a tibble already generated while
tidy_and_attach()
will apply broom::tidy()
and attach the model.
Use tidy_get_model()
to get the model attached to the tibble and
tidy_detach_model()
to remove the attribute containing the model.
See also
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_header_rows()
,
tidy_add_n()
,
tidy_add_pairwise_contrasts()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_disambiguate_terms()
,
tidy_identify_variables()
,
tidy_plus_plus()
,
tidy_remove_intercept()
,
tidy_select_variables()
Examples
mod <- lm(Sepal.Length ~ Sepal.Width + Species, data = iris)
tt <- mod |>
tidy_and_attach(conf.int = TRUE)
tt
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 2.25 0.370 6.09 9.57e- 9 1.52 2.98
#> 2 Sepal.Width 0.804 0.106 7.56 4.19e-12 0.593 1.01
#> 3 Speciesversicolor 1.46 0.112 13.0 3.48e-26 1.24 1.68
#> 4 Speciesvirginica 1.95 0.100 19.5 2.09e-42 1.75 2.14
tidy_get_model(tt)
#>
#> Call:
#> lm(formula = Sepal.Length ~ Sepal.Width + Species, data = iris)
#>
#> Coefficients:
#> (Intercept) Sepal.Width Speciesversicolor Speciesvirginica
#> 2.2514 0.8036 1.4587 1.9468
#>