To facilitate the use of broom helpers with pipe, it is recommended to
attach the original model as an attribute to the tibble of model terms
generated by broom::tidy().
Usage
tidy_attach_model(x, model, .attributes = NULL)
tidy_and_attach(
  model,
  tidy_fun = tidy_with_broom_or_parameters,
  conf.int = TRUE,
  conf.level = 0.95,
  exponentiate = FALSE,
  model_matrix_attr = TRUE,
  ...
)
tidy_get_model(x)
tidy_detach_model(x)Arguments
- x
- ( - data.frame)
 A tidy tibble as produced by- tidy_*()functions.
- model
- (a model object, e.g. - glm)
 A model to be attached/tidied.
- .attributes
- ( - list)
 Named list of additional attributes to be attached to- x.
- tidy_fun
- ( - function)
 Option to specify a custom tidier function.
- conf.int
- ( - logical)
 Should confidence intervals be computed? (see- broom::tidy())
- conf.level
- ( - numeric)
 Level of confidence for confidence intervals (default: 95%).
- exponentiate
- ( - logical)
 Whether or not to exponentiate the coefficient estimates. This is typical for logistic, Poisson and Cox models, but a bad idea if there is no log or logit link; defaults to- FALSE.
- model_matrix_attr
- ( - logical)
 Whether model frame and model matrix should be added as attributes of- model(respectively named- "model_frame"and- "model_matrix") and passed through
- ...
- Other arguments passed to - tidy_fun().
Details
tidy_attach_model() attach the model to a tibble already generated while
tidy_and_attach() will apply broom::tidy() and attach the model.
Use tidy_get_model() to get the model attached to the tibble and
tidy_detach_model() to remove the attribute containing the model.
See also
Other tidy_helpers:
tidy_add_coefficients_type(),
tidy_add_contrasts(),
tidy_add_estimate_to_reference_rows(),
tidy_add_header_rows(),
tidy_add_n(),
tidy_add_pairwise_contrasts(),
tidy_add_reference_rows(),
tidy_add_term_labels(),
tidy_add_variable_labels(),
tidy_disambiguate_terms(),
tidy_group_by(),
tidy_identify_variables(),
tidy_plus_plus(),
tidy_remove_intercept(),
tidy_select_variables()
Examples
mod <- lm(Sepal.Length ~ Sepal.Width + Species, data = iris)
tt <- mod |>
  tidy_and_attach(conf.int = TRUE)
tt
#> # A tibble: 4 × 7
#>   term              estimate std.error statistic  p.value conf.low conf.high
#>   <chr>                <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)          2.25      0.370      6.09 9.57e- 9    1.52       2.98
#> 2 Sepal.Width          0.804     0.106      7.56 4.19e-12    0.593      1.01
#> 3 Speciesversicolor    1.46      0.112     13.0  3.48e-26    1.24       1.68
#> 4 Speciesvirginica     1.95      0.100     19.5  2.09e-42    1.75       2.14
tidy_get_model(tt)
#> 
#> Call:
#> lm(formula = Sepal.Length ~ Sepal.Width + Species, data = iris)
#> 
#> Coefficients:
#>       (Intercept)        Sepal.Width  Speciesversicolor   Speciesvirginica  
#>            2.2514             0.8036             1.4587             1.9468  
#>