This function will apply sequentially:
Usage
tidy_plus_plus(
model,
tidy_fun = tidy_with_broom_or_parameters,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
model_matrix_attr = TRUE,
variable_labels = NULL,
instrumental_suffix = " (instrumental)",
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
relabel_poly = FALSE,
disambiguate_terms = TRUE,
disambiguate_sep = ".",
add_reference_rows = TRUE,
no_reference_row = NULL,
add_pairwise_contrasts = FALSE,
pairwise_variables = all_categorical(),
keep_model_terms = FALSE,
pairwise_reverse = TRUE,
contrasts_adjust = NULL,
emmeans_args = list(),
add_estimate_to_reference_rows = TRUE,
add_header_rows = FALSE,
show_single_row = NULL,
add_n = TRUE,
intercept = FALSE,
include = everything(),
group_by = auto_group_by(),
group_labels = NULL,
keep_model = FALSE,
tidy_post_fun = NULL,
quiet = FALSE,
strict = FALSE,
...
)Arguments
- model
(a model object, e.g.
glm)
A model to be attached/tidied.- tidy_fun
(
function)
Option to specify a custom tidier function.- conf.int
(
logical)
Should confidence intervals be computed? (seebroom::tidy())- conf.level
(
numeric)
Level of confidence for confidence intervals (default: 95%).- exponentiate
(
logical)
Whether or not to exponentiate the coefficient estimates. This is typical for logistic, Poisson and Cox models, but a bad idea if there is no log or logit link; defaults toFALSE.- model_matrix_attr
(
logical)
Whether model frame and model matrix should be added as attributes ofmodel(respectively named"model_frame"and"model_matrix") and passed through.- variable_labels
(
formula-list-selector)
A named list or a named vector of custom variable labels.- instrumental_suffix
(
string)
Suffix added to variable labels for instrumental variables (fixestmodels).NULLto add nothing.- term_labels
(
listorvector)
A named list or a named vector of custom term labels.- interaction_sep
(
string)
Separator for interaction terms.- categorical_terms_pattern
(
glue pattern)
A glue pattern for labels of categorical terms with treatment or sum contrasts (seemodel_list_terms_levels()).- relabel_poly
Should terms generated with
stats::poly()be relabeled?- disambiguate_terms
(
logical)
Should terms be disambiguated withtidy_disambiguate_terms()? (defaultTRUE)- disambiguate_sep
(
string)
Separator fortidy_disambiguate_terms().- add_reference_rows
(
logical)
Should reference rows be added?- no_reference_row
(
tidy-select)
Variables for those no reference row should be added, whenadd_reference_rows = TRUE.- add_pairwise_contrasts
(
logical)
Applytidy_add_pairwise_contrasts()?- pairwise_variables
(
tidy-select)
Variables to add pairwise contrasts.- keep_model_terms
(
logical)
Keep original model terms for variables where pairwise contrasts are added? (default isFALSE)- pairwise_reverse
(
logical)
Determines whether to use"pairwise"(ifTRUE) or"revpairwise"(ifFALSE), seeemmeans::contrast().- contrasts_adjust
(
string)
Optional adjustment method when computing contrasts, seeemmeans::contrast()(ifNULL, useemmeansdefault).- emmeans_args
(
list)
List of additional parameter to pass toemmeans::emmeans()when computing pairwise contrasts.- add_estimate_to_reference_rows
(
logical)
Should an estimate value be added to reference rows?- add_header_rows
(
logical)
Should header rows be added?- show_single_row
(
tidy-select)
Variables that should be displayed on a single row, whenadd_header_rowsisTRUE.- add_n
(
logical)
Should the number of observations be added?- intercept
(
logical)
Should the intercept(s) be included?- include
(
tidy-select)
Variables to include. Default iseverything(). See alsoall_continuous(),all_categorical(),all_dichotomous()andall_interaction().- group_by
(
tidy-select)
One or several variables to group by. Default isauto_group_by(). UseNULLto force ungrouping.- group_labels
(
string)
An optional named vector of custom term labels.- keep_model
(
logical)
Should the model be kept as an attribute of the final result?- tidy_post_fun
(
function)
Custom function applied to the results at the end oftidy_plus_plus()(see note)- quiet
(
logical)
Whetherbroom.helpersshould not return a message when requested output cannot be generated. Default isFALSE.- strict
(
logical)
Whetherbroom.helpersshould return an error when requested output cannot be generated. Default isFALSE.- ...
other arguments passed to
tidy_fun()
Note
tidy_post_fun is applied to the result at the end of tidy_plus_plus()
and receive only one argument (the result of tidy_plus_plus()). However,
if needed, the model is still attached to the tibble as an attribute, even
if keep_model = FALSE. Therefore, it is possible to use tidy_get_model()
within tidy_fun if, for any reason, you need to access the source model.
See also
Other tidy_helpers:
tidy_add_coefficients_type(),
tidy_add_contrasts(),
tidy_add_estimate_to_reference_rows(),
tidy_add_header_rows(),
tidy_add_n(),
tidy_add_pairwise_contrasts(),
tidy_add_reference_rows(),
tidy_add_term_labels(),
tidy_add_variable_labels(),
tidy_attach_model(),
tidy_disambiguate_terms(),
tidy_group_by(),
tidy_identify_variables(),
tidy_remove_intercept(),
tidy_select_variables()
Examples
# \donttest{
ex1 <- lm(Sepal.Length ~ Sepal.Width + Species, data = iris) |>
tidy_plus_plus()
ex1
#> # A tibble: 4 × 17
#> term variable var_label var_class var_type var_nlevels contrasts
#> <chr> <chr> <chr> <chr> <chr> <int> <chr>
#> 1 Sepal.Width Sepal.Wi… Sepal.Wi… numeric continu… NA NA
#> 2 Speciessetosa Species Species factor categor… 3 contr.tr…
#> 3 Speciesversicolor Species Species factor categor… 3 contr.tr…
#> 4 Speciesvirginica Species Species factor categor… 3 contr.tr…
#> # ℹ 10 more variables: contrasts_type <chr>, reference_row <lgl>, label <chr>,
#> # n_obs <dbl>, estimate <dbl>, std.error <dbl>, statistic <dbl>,
#> # p.value <dbl>, conf.low <dbl>, conf.high <dbl>
df <- Titanic |>
dplyr::as_tibble() |>
dplyr::mutate(
Survived = factor(Survived, c("No", "Yes"))
) |>
labelled::set_variable_labels(
Class = "Passenger's class",
Sex = "Gender"
)
ex2 <- glm(
Survived ~ Class + Age * Sex,
data = df, weights = df$n,
family = binomial
) |>
tidy_plus_plus(
exponentiate = TRUE,
add_reference_rows = FALSE,
categorical_terms_pattern = "{level} / {reference_level}",
add_n = TRUE
)
ex2
#> # A tibble: 6 × 17
#> term variable var_label var_class var_type var_nlevels contrasts
#> <chr> <chr> <chr> <chr> <chr> <int> <chr>
#> 1 Class2nd Class Passenger'… character categor… 4 contr.tr…
#> 2 Class3rd Class Passenger'… character categor… 4 contr.tr…
#> 3 ClassCrew Class Passenger'… character categor… 4 contr.tr…
#> 4 AgeChild Age Age character dichoto… 2 contr.tr…
#> 5 SexMale Sex Gender character dichoto… 2 contr.tr…
#> 6 AgeChild:SexMale Age:Sex Age * Gend… NA interac… NA NA
#> # ℹ 10 more variables: contrasts_type <chr>, label <chr>, n_obs <dbl>,
#> # n_event <dbl>, estimate <dbl>, std.error <dbl>, statistic <dbl>,
#> # p.value <dbl>, conf.low <dbl>, conf.high <dbl>
# }
# \donttest{
ex3 <-
glm(
response ~ poly(age, 3) + stage + grade * trt,
na.omit(gtsummary::trial),
family = binomial,
contrasts = list(
stage = contr.treatment(4, base = 3),
grade = contr.sum
)
) |>
tidy_plus_plus(
exponentiate = TRUE,
variable_labels = c(age = "Age (in years)"),
add_header_rows = TRUE,
show_single_row = all_dichotomous(),
term_labels = c("poly(age, 3)3" = "Cubic age"),
keep_model = TRUE
)
ex3
#> # A tibble: 17 × 19
#> term variable var_label var_class var_type var_nlevels header_row contrasts
#> <chr> <chr> <chr> <chr> <chr> <int> <lgl> <chr>
#> 1 NA age Age (in … nmatrix.3 continu… NA TRUE NA
#> 2 poly(… age Age (in … nmatrix.3 continu… NA FALSE NA
#> 3 poly(… age Age (in … nmatrix.3 continu… NA FALSE NA
#> 4 poly(… age Age (in … nmatrix.3 continu… NA FALSE NA
#> 5 NA stage T Stage factor categor… 4 TRUE contr.tr…
#> 6 stage1 stage T Stage factor categor… 4 FALSE contr.tr…
#> 7 stage2 stage T Stage factor categor… 4 FALSE contr.tr…
#> 8 stage3 stage T Stage factor categor… 4 FALSE contr.tr…
#> 9 stage4 stage T Stage factor categor… 4 FALSE contr.tr…
#> 10 NA grade Grade factor categor… 3 TRUE contr.sum
#> 11 grade1 grade Grade factor categor… 3 FALSE contr.sum
#> 12 grade2 grade Grade factor categor… 3 FALSE contr.sum
#> 13 grade3 grade Grade factor categor… 3 FALSE contr.sum
#> 14 trtDr… trt Chemothe… character dichoto… 2 NA contr.tr…
#> 15 NA grade:t… Grade * … NA interac… NA TRUE NA
#> 16 grade… grade:t… Grade * … NA interac… NA FALSE NA
#> 17 grade… grade:t… Grade * … NA interac… NA FALSE NA
#> # ℹ 11 more variables: contrasts_type <chr>, reference_row <lgl>, label <chr>,
#> # n_obs <dbl>, n_event <dbl>, estimate <dbl>, std.error <dbl>,
#> # statistic <dbl>, p.value <dbl>, conf.low <dbl>, conf.high <dbl>
# }