Add a contrasts column corresponding to contrasts used for a
categorical variable and a contrasts_type column equal to
"treatment", "sum", "poly", "helmert", "other" or "no.contrast".
Usage
tidy_add_contrasts(x, model = tidy_get_model(x), quiet = FALSE)Arguments
- x
- ( - data.frame)
 A tidy tibble as produced by- tidy_*()functions.
- model
- (a model object, e.g. - glm)
 The corresponding model, if not attached to- x.
- quiet
- ( - logical)
 Whether broom.helpers should not return a message when- tidy_disambiguate_terms()was already applied
Details
If the variable column is not yet available in x,
tidy_identify_variables() will be automatically applied.
See also
Other tidy_helpers:
tidy_add_coefficients_type(),
tidy_add_estimate_to_reference_rows(),
tidy_add_header_rows(),
tidy_add_n(),
tidy_add_pairwise_contrasts(),
tidy_add_reference_rows(),
tidy_add_term_labels(),
tidy_add_variable_labels(),
tidy_attach_model(),
tidy_disambiguate_terms(),
tidy_group_by(),
tidy_identify_variables(),
tidy_plus_plus(),
tidy_remove_intercept(),
tidy_select_variables()
Examples
df <- Titanic |>
  dplyr::as_tibble() |>
  dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
glm(
  Survived ~ Class + Age + Sex,
  data = df, weights = df$n, family = binomial,
  contrasts = list(Age = contr.sum, Class = "contr.helmert")
) |>
  tidy_and_attach() |>
  tidy_add_contrasts()
#> # A tibble: 6 × 13
#>   term        variable   var_class var_type var_nlevels contrasts contrasts_type
#>   <chr>       <chr>      <chr>     <chr>          <int> <chr>     <chr>         
#> 1 (Intercept) (Intercep… NA        interce…          NA NA        NA            
#> 2 Class1      Class      character categor…           4 contr.he… helmert       
#> 3 Class2      Class      character categor…           4 contr.he… helmert       
#> 4 Class3      Class      character categor…           4 contr.he… helmert       
#> 5 Age1        Age        character dichoto…           2 contr.sum sum           
#> 6 SexMale     Sex        character dichoto…           2 contr.tr… treatment     
#> # ℹ 6 more variables: estimate <dbl>, std.error <dbl>, statistic <dbl>,
#> #   p.value <dbl>, conf.low <dbl>, conf.high <dbl>