Identify the variable corresponding to each model coefficient
Source:R/tidy_identify_variables.R
tidy_identify_variables.Rd
tidy_identify_variables()
will add to the tidy tibble
three additional columns: variable
, var_class
, var_type
and var_nlevels
.
Usage
tidy_identify_variables(x, model = tidy_get_model(x), quiet = FALSE)
Details
It will also identify interaction terms and intercept(s).
var_type
could be:
"continuous"
,"dichotomous"
(categorical variable with 2 levels),"categorical"
(categorical variable with 3 levels or more),"intercept"
"interaction"
"ran_pars
(random-effect parameters for mixed models)"ran_vals"
(random-effect values for mixed models)"unknown"
in the rare cases wheretidy_identify_variables()
will fail to identify the list of variables
For dichotomous and categorical variables, var_nlevels
corresponds to the number
of original levels in the corresponding variables.
For fixest
models, a new column instrumental
is added to indicate
instrumental variables.
See also
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_header_rows()
,
tidy_add_n()
,
tidy_add_pairwise_contrasts()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_attach_model()
,
tidy_disambiguate_terms()
,
tidy_plus_plus()
,
tidy_remove_intercept()
,
tidy_select_variables()
Examples
df <- Titanic |>
dplyr::as_tibble() |>
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
glm(
Survived ~ Class + Age * Sex,
data = df,
weights = df$n,
family = binomial
) |>
tidy_and_attach() |>
tidy_identify_variables()
#> # A tibble: 7 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 2.18 0.176 12.4
#> 2 Class2nd Class character categor… 4 -1.03 0.200 -5.17
#> 3 Class3rd Class character categor… 4 -1.81 0.176 -10.3
#> 4 ClassCrew Class character categor… 4 -0.803 0.160 -5.03
#> 5 AgeChild Age character dichoto… 2 -0.110 0.335 -0.328
#> 6 SexMale Sex character dichoto… 2 -2.62 0.151 -17.3
#> 7 AgeChild… Age:Sex NA interac… NA 1.90 0.433 4.39
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>
lm(
Sepal.Length ~ poly(Sepal.Width, 2) + Species,
data = iris,
contrasts = list(Species = contr.sum)
) |>
tidy_and_attach(conf.int = TRUE) |>
tidy_identify_variables()
#> # A tibble: 5 × 11
#> term variable var_class var_type var_nlevels estimate std.error statistic
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 (Interce… (Interc… NA interce… NA 5.84 0.0359 163.
#> 2 poly(Sep… Sepal.W… nmatrix.2 continu… NA 4.27 0.568 7.52
#> 3 poly(Sep… Sepal.W… nmatrix.2 continu… NA -0.0720 0.447 -0.161
#> 4 Species1 Species factor categor… 3 -1.13 0.0647 -17.5
#> 5 Species2 Species factor categor… 3 0.324 0.0593 5.46
#> # ℹ 3 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>