For mixed models, the term
column returned by broom.mixed
may have
duplicated values for random-effect parameters and random-effect values.
In such case, the terms could be disambiguated be prefixing them with the
value of the group
column. tidy_disambiguate_terms()
will not change
any term if there is no group
column in x
. The original term value
is kept in a new column original_term
.
Usage
tidy_disambiguate_terms(x, sep = ".", model = tidy_get_model(x), quiet = FALSE)
Arguments
- x
(
data.frame
)
A tidy tibble as produced bytidy_*()
functions.- sep
(
string
)
Separator added between group name and term.- model
(a model object, e.g.
glm
)
The corresponding model, if not attached tox
.- quiet
(
logical
)
Whetherbroom.helpers
should not return a message when requested output cannot be generated. Default isFALSE
.
See also
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_header_rows()
,
tidy_add_n()
,
tidy_add_pairwise_contrasts()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_attach_model()
,
tidy_group_by()
,
tidy_identify_variables()
,
tidy_plus_plus()
,
tidy_remove_intercept()
,
tidy_select_variables()
Examples
# \donttest{
if (
.assert_package("lme4", boolean = TRUE) &&
.assert_package("broom.mixed", boolean = TRUE) &&
.assert_package("gtsummary", boolean = TRUE)
) {
mod <- lme4::lmer(marker ~ stage + (1 | grade) + (death | response), gtsummary::trial)
mod |>
tidy_and_attach() |>
tidy_disambiguate_terms()
}
#> boundary (singular) fit: see help('isSingular')
#> # A tibble: 9 × 9
#> term original_term effect group estimate std.error statistic conf.low
#> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) (Intercept) fixed NA 0.772 0.179 4.32 0.422
#> 2 stageT2 stageT2 fixed NA 0.350 0.170 2.06 0.0166
#> 3 stageT3 stageT3 fixed NA 0.272 0.187 1.45 -0.0945
#> 4 stageT4 stageT4 fixed NA 0.131 0.173 0.757 -0.208
#> 5 grade.sd__(I… sd__(Interce… ran_p… grade 0.153 NA NA NA
#> 6 response.sd_… sd__(Interce… ran_p… resp… 0.121 NA NA NA
#> 7 response.cor… cor__(Interc… ran_p… resp… 1 NA NA NA
#> 8 response.sd_… sd__death ran_p… resp… 0.0468 NA NA NA
#> 9 Residual.sd_… sd__Observat… ran_p… Resi… 0.841 NA NA NA
#> # ℹ 1 more variable: conf.high <dbl>
# }