Identify for each coefficient of a model the corresponding variable
Source:R/model_identify_variables.R
model_identify_variables.RdIt will also identify interaction terms and intercept(s).
Usage
model_identify_variables(model)
# Default S3 method
model_identify_variables(model)
# S3 method for class 'lavaan'
model_identify_variables(model)
# S3 method for class 'aov'
model_identify_variables(model)
# S3 method for class 'clm'
model_identify_variables(model)
# S3 method for class 'clmm'
model_identify_variables(model)
# S3 method for class 'gam'
model_identify_variables(model)
# S3 method for class 'model_fit'
model_identify_variables(model)
# S3 method for class 'logitr'
model_identify_variables(model)
# S3 method for class 'svy_vglm'
model_identify_variables(model)Value
A tibble with four columns:
term: coefficients of the modelvariable: the corresponding variablevar_class: class of the variable (cf.stats::.MFclass())var_type:"continuous","dichotomous"(categorical variable with 2 levels),"categorical"(categorical variable with 3 or more levels),"intercept"or"interaction"var_nlevels: number of original levels for categorical variables
See also
Other model_helpers:
model_compute_terms_contributions(),
model_get_assign(),
model_get_coefficients_type(),
model_get_contrasts(),
model_get_model(),
model_get_model_frame(),
model_get_model_matrix(),
model_get_n(),
model_get_nlevels(),
model_get_offset(),
model_get_pairwise_contrasts(),
model_get_response(),
model_get_response_variable(),
model_get_terms(),
model_get_weights(),
model_get_xlevels(),
model_list_contrasts(),
model_list_higher_order_variables(),
model_list_terms_levels(),
model_list_variables()
Examples
df <- Titanic |>
dplyr::as_tibble() |>
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
glm(
Survived ~ Class + Age * Sex,
data = df, weights = df$n,
family = binomial
) |>
model_identify_variables()
#> # A tibble: 7 × 5
#> term variable var_class var_nlevels var_type
#> <chr> <chr> <chr> <int> <chr>
#> 1 (Intercept) NA NA NA intercept
#> 2 Class2nd Class character 4 categorical
#> 3 Class3rd Class character 4 categorical
#> 4 ClassCrew Class character 4 categorical
#> 5 AgeChild Age character 2 dichotomous
#> 6 SexMale Sex character 2 dichotomous
#> 7 AgeChild:SexMale Age:Sex NA NA interaction
lm(
Sepal.Length ~ poly(Sepal.Width, 2) + Species,
data = iris,
contrasts = list(Species = contr.sum)
) |>
model_identify_variables()
#> # A tibble: 5 × 5
#> term variable var_class var_nlevels var_type
#> <chr> <chr> <chr> <int> <chr>
#> 1 (Intercept) NA NA NA intercept
#> 2 poly(Sepal.Width, 2)1 Sepal.Width nmatrix.2 NA continuous
#> 3 poly(Sepal.Width, 2)2 Sepal.Width nmatrix.2 NA continuous
#> 4 Species1 Species factor 3 categorical
#> 5 Species2 Species factor 3 categorical