Indicates that results should be grouped. By default
(group_by = auto_group_by()
), results will be grouped according to the
y.level
column (for multinomial models) or the component
column
(multi-components models) if any.
Usage
tidy_group_by(
x,
group_by = auto_group_by(),
group_labels = NULL,
model = tidy_get_model(x)
)
auto_group_by()
Arguments
- x
(
data.frame
)
A tidy tibble as produced bytidy_*()
functions.- group_by
(
tidy-select
)
One or several variables to group by. Default isauto_group_by()
. UseNULL
to force ungrouping.- group_labels
(
string
)
An optional named vector of custom term labels.- model
(a model object, e.g.
glm
)
The corresponding model, if not attached tox
.
See also
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_header_rows()
,
tidy_add_n()
,
tidy_add_pairwise_contrasts()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_attach_model()
,
tidy_disambiguate_terms()
,
tidy_identify_variables()
,
tidy_plus_plus()
,
tidy_remove_intercept()
,
tidy_select_variables()
Examples
mod <- multinom(Species ~ Petal.Width + Petal.Length, data = iris)
#> # weights: 12 (6 variable)
#> initial value 164.791843
#> iter 10 value 12.657828
#> iter 20 value 10.374056
#> iter 30 value 10.330881
#> iter 40 value 10.306926
#> iter 50 value 10.300057
#> iter 60 value 10.296452
#> iter 70 value 10.294046
#> iter 80 value 10.292029
#> iter 90 value 10.291154
#> iter 100 value 10.289505
#> final value 10.289505
#> stopped after 100 iterations
mod |> tidy_and_attach() |> tidy_group_by()
#> # A tibble: 6 × 9
#> group_by y.level term estimate std.error statistic p.value conf.low conf.high
#> <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 versico… versic… (Int… -22.8 44.4 -0.514 0.607 -110. 64.2
#> 2 versico… versic… Peta… 7.88 81.0 0.0973 0.923 -151. 167.
#> 3 versico… versic… Peta… 6.92 37.6 0.184 0.854 -66.7 80.6
#> 4 virgini… virgin… (Int… -67.8 46.4 -1.46 0.144 -159. 23.1
#> 5 virgini… virgin… Peta… 18.3 81.1 0.225 0.822 -141. 177.
#> 6 virgini… virgin… Peta… 12.6 37.7 0.336 0.737 -61.2 86.5
mod |>
tidy_and_attach() |>
tidy_group_by(group_labels = c(versicolor = "harlequin blueflag"))
#> # A tibble: 6 × 9
#> group_by y.level term estimate std.error statistic p.value conf.low conf.high
#> <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 harlequ… versic… (Int… -22.8 44.4 -0.514 0.607 -110. 64.2
#> 2 harlequ… versic… Peta… 7.88 81.0 0.0973 0.923 -151. 167.
#> 3 harlequ… versic… Peta… 6.92 37.6 0.184 0.854 -66.7 80.6
#> 4 virgini… virgin… (Int… -67.8 46.4 -1.46 0.144 -159. 23.1
#> 5 virgini… virgin… Peta… 18.3 81.1 0.225 0.822 -141. 177.
#> 6 virgini… virgin… Peta… 12.6 37.7 0.336 0.737 -61.2 86.5
mod |> tidy_and_attach() |> tidy_group_by(group_by = NULL)
#> # A tibble: 6 × 8
#> y.level term estimate std.error statistic p.value conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 versicolor (Intercept) -22.8 44.4 -0.514 0.607 -110. 64.2
#> 2 versicolor Petal.Width 7.88 81.0 0.0973 0.923 -151. 167.
#> 3 versicolor Petal.Leng… 6.92 37.6 0.184 0.854 -66.7 80.6
#> 4 virginica (Intercept) -67.8 46.4 -1.46 0.144 -159. 23.1
#> 5 virginica Petal.Width 18.3 81.1 0.225 0.822 -141. 177.
#> 6 virginica Petal.Leng… 12.6 37.7 0.336 0.737 -61.2 86.5
mod |>
tidy_and_attach() |>
tidy_identify_variables() |>
tidy_group_by(group_by = variable)
#> # A tibble: 6 × 13
#> group_by y.level term variable var_class var_type var_nlevels estimate
#> <fct> <chr> <chr> <chr> <chr> <chr> <int> <dbl>
#> 1 (Intercept) versicolor (Int… (Interc… NA interce… NA -22.8
#> 2 (Intercept) virginica (Int… (Interc… NA interce… NA -67.8
#> 3 Petal.Width versicolor Peta… Petal.W… numeric continu… NA 7.88
#> 4 Petal.Width virginica Peta… Petal.W… numeric continu… NA 18.3
#> 5 Petal.Length versicolor Peta… Petal.L… numeric continu… NA 6.92
#> 6 Petal.Length virginica Peta… Petal.L… numeric continu… NA 12.6
#> # ℹ 5 more variables: std.error <dbl>, statistic <dbl>, p.value <dbl>,
#> # conf.low <dbl>, conf.high <dbl>