Package index
-
var_label()
`var_label<-`()
get_variable_labels()
set_variable_labels()
label_attribute()
get_label_attribute()
set_label_attribute()
`label_attribute<-`()
- Get / Set a variable label
-
remove_labels()
remove_var_label()
remove_val_labels()
remove_user_na()
- Remove variable label, value labels and user defined missing values
-
copy_labels()
copy_labels_from()
- Copy variable and value labels and SPSS-style missing value
-
update_variable_labels_with()
update_value_labels_with()
- Update variable/value labels with a function
-
reexports
labelled
is.labelled
labelled_spss
print_labels
%>%
tagged_na
na_tag
is_tagged_na
format_tagged_na
print_tagged_na
- Objects exported from other packages
-
val_labels()
`val_labels<-`()
val_label()
`val_label<-`()
get_value_labels()
set_value_labels()
add_value_labels()
remove_value_labels()
- Get / Set value labels
-
remove_labels()
remove_var_label()
remove_val_labels()
remove_user_na()
- Remove variable label, value labels and user defined missing values
-
sort_val_labels()
- Sort value labels
-
val_labels_to_na()
- Recode value labels to NA
-
nolabel_to_na()
- Recode values with no label to NA
-
drop_unused_value_labels()
- Drop unused value labels
-
copy_labels()
copy_labels_from()
- Copy variable and value labels and SPSS-style missing value
-
update_variable_labels_with()
update_value_labels_with()
- Update variable/value labels with a function
Data dictionnary
Functions to look for keywords variable names / labels and create a data dictionary
-
look_for()
lookfor()
generate_dictionary()
print(<look_for>)
look_for_and_select()
convert_list_columns_to_character()
lookfor_to_long_format()
- Look for keywords variable names and descriptions / Create a data dictionary
Manipulating SPSS style missing values
Functions to set, manipulate and remove SPSS style missing values
-
reexports
labelled
is.labelled
labelled_spss
print_labels
%>%
tagged_na
na_tag
is_tagged_na
format_tagged_na
print_tagged_na
- Objects exported from other packages
-
na_values()
`na_values<-`()
na_range()
`na_range<-`()
get_na_values()
get_na_range()
set_na_values()
set_na_range()
is_user_na()
is_regular_na()
user_na_to_na()
user_na_to_regular_na()
user_na_to_tagged_na()
- Get / Set SPSS missing values
-
copy_labels()
copy_labels_from()
- Copy variable and value labels and SPSS-style missing value
-
remove_labels()
remove_var_label()
remove_val_labels()
remove_user_na()
- Remove variable label, value labels and user defined missing values
-
reexports
labelled
is.labelled
labelled_spss
print_labels
%>%
tagged_na
na_tag
is_tagged_na
format_tagged_na
print_tagged_na
- Objects exported from other packages
-
unique_tagged_na()
duplicated_tagged_na()
order_tagged_na()
sort_tagged_na()
- Unique elements, duplicated, ordering and sorting with tagged NAs
-
tagged_na_to_user_na()
tagged_na_to_regular_na()
- Convert tagged NAs into user NAs
-
to_character()
- Convert input to a character vector
-
to_factor()
unlabelled()
- Convert input to a factor.
-
to_labelled()
foreign_to_labelled()
memisc_to_labelled()
- Convert to labelled data
-
update_labelled()
- Update labelled data to last version
-
is_prefixed()
- Check if a factor is prefixed
-
recode_if()
- Recode some values based on condition
-
recode(<haven_labelled>)
- Recode values
-
remove_attributes()
- Remove attributes
-
names_prefixed_by_values()
- Turn a named vector into a vector of names prefixed by values
-
x_haven_2.0
x_spss_haven_2.0
spss_file
dta_file
- Datasets for testing