Skip to contents

look_for emulates the lookfor Stata command in R. It supports searching into the variable names of regular R data frames as well as into variable labels descriptions, factor levels and value labels. The command is meant to help users finding variables in large datasets.

Usage

look_for(
  data,
  ...,
  labels = TRUE,
  values = TRUE,
  ignore.case = TRUE,
  details = c("basic", "none", "full")
)

lookfor(
  data,
  ...,
  labels = TRUE,
  values = TRUE,
  ignore.case = TRUE,
  details = c("basic", "none", "full")
)

generate_dictionary(
  data,
  ...,
  labels = TRUE,
  values = TRUE,
  ignore.case = TRUE,
  details = c("basic", "none", "full")
)

# S3 method for class 'look_for'
print(x, ...)

look_for_and_select(
  data,
  ...,
  labels = TRUE,
  values = TRUE,
  ignore.case = TRUE
)

convert_list_columns_to_character(x)

lookfor_to_long_format(x)

Source

Inspired by the lookfor command in Stata.

Arguments

data

a data frame or a survey object

...

optional list of keywords, a character string (or several character strings), which can be formatted as a regular expression suitable for a base::grep() pattern, or a vector of keywords; displays all variables if not specified

labels

whether or not to search variable labels (descriptions); TRUE by default

values

whether or not to search within values (factor levels or value labels); TRUE by default

ignore.case

whether or not to make the keywords case sensitive; TRUE by default (case is ignored during matching)

details

add details about each variable (full details could be time consuming for big data frames, FALSE is equivalent to "none" and TRUE to "full")

x

a tibble returned by look_for()

Value

a tibble data frame featuring the variable position, name and description (if it exists) in the original data frame

Details

When no keyword is provided, it will produce a data dictionary of the overall data frame.

The function looks into the variable names for matches to the keywords. If available, variable labels are included in the search scope. Variable labels of data.frame imported with foreign or memisc packages will also be taken into account (see to_labelled()). If no keyword is provided, it will return all variables of data.

look_for(), lookfor() and generate_dictionary() are equivalent.

By default, results will be summarized when printing. To deactivate default printing, use dplyr::as_tibble().

lookfor_to_long_format() could be used to transform results with one row per factor level and per value label.

Use convert_list_columns_to_character() to convert named list columns into character vectors (see examples).

look_for_and_select() is a shortcut for selecting some variables and applying dplyr::select() to return a data frame with only the selected variables.

Author

François Briatte f.briatte@gmail.com, Joseph Larmarange joseph@larmarange.net

Examples

look_for(iris)
#>  pos variable     label col_type missing values    
#>  1   Sepal.Length —     dbl      0                 
#>  2   Sepal.Width  —     dbl      0                 
#>  3   Petal.Length —     dbl      0                 
#>  4   Petal.Width  —     dbl      0                 
#>  5   Species      —     fct      0       setosa    
#>                                          versicolor
#>                                          virginica 

# Look for a single keyword.
look_for(iris, "petal")
#>  pos variable     label col_type missing values
#>  3   Petal.Length —     dbl      0             
#>  4   Petal.Width  —     dbl      0             
look_for(iris, "s")
#>  pos variable     label col_type missing values    
#>  1   Sepal.Length —     dbl      0                 
#>  2   Sepal.Width  —     dbl      0                 
#>  5   Species      —     fct      0       setosa    
#>                                          versicolor
#>                                          virginica 
iris %>%
  look_for_and_select("s") %>%
  head()
#>   Sepal.Length Sepal.Width Species
#> 1          5.1         3.5  setosa
#> 2          4.9         3.0  setosa
#> 3          4.7         3.2  setosa
#> 4          4.6         3.1  setosa
#> 5          5.0         3.6  setosa
#> 6          5.4         3.9  setosa

# Look for with a regular expression
look_for(iris, "petal|species")
#>  pos variable     label col_type missing values    
#>  3   Petal.Length —     dbl      0                 
#>  4   Petal.Width  —     dbl      0                 
#>  5   Species      —     fct      0       setosa    
#>                                          versicolor
#>                                          virginica 
look_for(iris, "s$")
#>  pos variable label col_type missing values    
#>  5   Species  —     fct      0       setosa    
#>                                      versicolor
#>                                      virginica 

# Look for with several keywords
look_for(iris, "pet", "sp")
#>  pos variable     label col_type missing values    
#>  3   Petal.Length —     dbl      0                 
#>  4   Petal.Width  —     dbl      0                 
#>  5   Species      —     fct      0       setosa    
#>                                          versicolor
#>                                          virginica 
look_for(iris, "pet", "sp", "width")
#>  pos variable     label col_type missing values    
#>  2   Sepal.Width  —     dbl      0                 
#>  3   Petal.Length —     dbl      0                 
#>  4   Petal.Width  —     dbl      0                 
#>  5   Species      —     fct      0       setosa    
#>                                          versicolor
#>                                          virginica 
look_for(iris, "Pet", "sp", "width", ignore.case = FALSE)
#>  pos variable     label col_type missing values
#>  3   Petal.Length —     dbl      0             
#>  4   Petal.Width  —     dbl      0             

# Look_for can search within factor levels or value labels
look_for(iris, "vers")
#>  pos variable label col_type missing values    
#>  5   Species  —     fct      0       setosa    
#>                                      versicolor
#>                                      virginica 

# Quicker search without variable details
look_for(iris, details = "none")
#>  pos variable     label
#>  1   Sepal.Length —    
#>  2   Sepal.Width  —    
#>  3   Petal.Length —    
#>  4   Petal.Width  —    
#>  5   Species      —    

# To obtain more details about each variable
look_for(iris, details = "full")
#>  pos variable     label col_type missing unique_values values          
#>  1   Sepal.Length —     dbl      0       35            range: 4.3 - 7.9
#>  2   Sepal.Width  —     dbl      0       23            range: 2 - 4.4  
#>  3   Petal.Length —     dbl      0       43            range: 1 - 6.9  
#>  4   Petal.Width  —     dbl      0       22            range: 0.1 - 2.5
#>  5   Species      —     fct      0       3             setosa          
#>                                                        versicolor      
#>                                                        virginica       
#>  na_values na_range
#>                    
#>                    
#>                    
#>                    
#>                    
#>                    
#>                    

# To deactivate default printing, convert to tibble
look_for(iris, details = "full") %>%
  dplyr::as_tibble()
#> # A tibble: 5 × 14
#>     pos variable     label col_type missing levels      value_labels class type 
#>   <int> <chr>        <chr> <chr>      <int> <named lis> <named list> <nam> <chr>
#> 1     1 Sepal.Length NA    dbl            0 <NULL>      <NULL>       <chr> doub…
#> 2     2 Sepal.Width  NA    dbl            0 <NULL>      <NULL>       <chr> doub…
#> 3     3 Petal.Length NA    dbl            0 <NULL>      <NULL>       <chr> doub…
#> 4     4 Petal.Width  NA    dbl            0 <NULL>      <NULL>       <chr> doub…
#> 5     5 Species      NA    fct            0 <chr [3]>   <NULL>       <chr> inte…
#> # ℹ 5 more variables: na_values <named list>, na_range <named list>,
#> #   n_na <int>, unique_values <int>, range <named list>

# To convert named lists into character vectors
look_for(iris) %>% convert_list_columns_to_character()
#> # A tibble: 5 × 7
#>     pos variable     label col_type missing levels                  value_labels
#>   <int> <chr>        <chr> <chr>      <int> <chr>                   <chr>       
#> 1     1 Sepal.Length NA    dbl            0 ""                      ""          
#> 2     2 Sepal.Width  NA    dbl            0 ""                      ""          
#> 3     3 Petal.Length NA    dbl            0 ""                      ""          
#> 4     4 Petal.Width  NA    dbl            0 ""                      ""          
#> 5     5 Species      NA    fct            0 "setosa; versicolor; v… ""          

# Long format with one row per factor and per value label
look_for(iris) %>% lookfor_to_long_format()
#> # A tibble: 7 × 7
#>     pos variable     label col_type missing levels     value_labels
#>   <int> <chr>        <chr> <chr>      <int> <chr>      <chr>       
#> 1     1 Sepal.Length NA    dbl            0 NA         NA          
#> 2     2 Sepal.Width  NA    dbl            0 NA         NA          
#> 3     3 Petal.Length NA    dbl            0 NA         NA          
#> 4     4 Petal.Width  NA    dbl            0 NA         NA          
#> 5     5 Species      NA    fct            0 setosa     NA          
#> 6     5 Species      NA    fct            0 versicolor NA          
#> 7     5 Species      NA    fct            0 virginica  NA          

# Both functions can be combined
look_for(iris) %>%
  lookfor_to_long_format() %>%
  convert_list_columns_to_character()
#> # A tibble: 7 × 7
#>     pos variable     label col_type missing levels     value_labels
#>   <int> <chr>        <chr> <chr>      <int> <chr>      <chr>       
#> 1     1 Sepal.Length NA    dbl            0 NA         NA          
#> 2     2 Sepal.Width  NA    dbl            0 NA         NA          
#> 3     3 Petal.Length NA    dbl            0 NA         NA          
#> 4     4 Petal.Width  NA    dbl            0 NA         NA          
#> 5     5 Species      NA    fct            0 setosa     NA          
#> 6     5 Species      NA    fct            0 versicolor NA          
#> 7     5 Species      NA    fct            0 virginica  NA          

# Labelled data
d <- dplyr::tibble(
  region = labelled_spss(
    c(1, 2, 1, 9, 2, 3),
    c(north = 1, south = 2, center = 3, missing = 9),
    na_values = 9,
    label = "Region of the respondent"
  ),
  sex = labelled(
    c("f", "f", "m", "m", "m", "f"),
    c(female = "f", male = "m"),
    label = "Sex of the respondent"
  )
)
look_for(d)
#>  pos variable label                    col_type missing values     
#>  1   region   Region of the respondent dbl+lbl  1       [1] north  
#>                                                         [2] south  
#>                                                         [3] center 
#>                                                         [9] missing
#>  2   sex      Sex of the respondent    chr+lbl  0       [f] female 
#>                                                         [m] male   
d %>%
  look_for() %>%
  lookfor_to_long_format() %>%
  convert_list_columns_to_character()
#> # A tibble: 6 × 7
#>     pos variable label                    col_type missing levels value_labels
#>   <int> <chr>    <chr>                    <chr>      <int> <chr>  <chr>       
#> 1     1 region   Region of the respondent dbl+lbl        1 NA     [1] north   
#> 2     1 region   Region of the respondent dbl+lbl        1 NA     [2] south   
#> 3     1 region   Region of the respondent dbl+lbl        1 NA     [3] center  
#> 4     1 region   Region of the respondent dbl+lbl        1 NA     [9] missing 
#> 5     2 sex      Sex of the respondent    chr+lbl        0 NA     [f] female  
#> 6     2 sex      Sex of the respondent    chr+lbl        0 NA     [m] male