A tidier for models generated with pscl::zeroinfl()
or pscl::hurdle()
.
Term names will be updated to be consistent with generic models. The original
term names are preserved in an "original_term"
column.
Arguments
- x
(
zeroinfl
orhurdle
)
Apscl::zeroinfl()
or apscl::hurdle()
model.- conf.int
(
logical
)
Whether or not to include a confidence interval in the tidied output.- conf.level
(
numeric
)
The confidence level to use for the confidence interval (between0
ans1
).- component
(
string
)NULL
or one of"all"
,"conditional"
,"zi"
, or"zero_inflated"
.- ...
Additional parameters passed to
parameters::model_parameters()
.
See also
Other custom_tieders:
tidy_broom()
,
tidy_multgee()
,
tidy_parameters()
,
tidy_vgam()
,
tidy_with_broom_or_parameters()
Examples
# \donttest{
library(pscl)
#> Classes and Methods for R originally developed in the
#> Political Science Computational Laboratory
#> Department of Political Science
#> Stanford University (2002-2015),
#> by and under the direction of Simon Jackman.
#> hurdle and zeroinfl functions by Achim Zeileis.
mod <- zeroinfl(
art ~ fem + mar + phd,
data = pscl::bioChemists
)
mod |> tidy_zeroinfl(exponentiate = TRUE)
#> term estimate std.error conf.level conf.low conf.high statistic
#> 1 (Intercept) 1.9931582 0.24207622 0.95 1.5709425 2.5288511 5.678880601
#> 2 femWomen 0.7927569 0.05065926 0.95 0.6994328 0.8985331 -3.634257379
#> 3 marMarried 1.0205525 0.06836479 0.95 0.8949835 1.1637392 0.303698153
#> 4 phd 1.0476698 0.03191840 0.95 0.9869420 1.1121342 1.528534270
#> 5 (Intercept) 0.4927629 0.21953942 0.95 0.2057805 1.1799720 -1.588515135
#> 6 femWomen 0.9996043 0.24730683 0.95 0.6155125 1.6233771 -0.001599636
#> 7 marMarried 0.8705892 0.22301499 0.95 0.5269443 1.4383408 -0.540998011
#> 8 phd 0.8268979 0.09602765 0.95 0.6585699 1.0382500 -1.636734762
#> df.error p.value component original_term
#> 1 Inf 1.355791e-08 conditional count_(Intercept)
#> 2 Inf 2.787825e-04 conditional count_femWomen
#> 3 Inf 7.613579e-01 conditional count_marMarried
#> 4 Inf 1.263799e-01 conditional count_phd
#> 5 Inf 1.121699e-01 zero_inflated zero_(Intercept)
#> 6 Inf 9.987237e-01 zero_inflated zero_femWomen
#> 7 Inf 5.885090e-01 zero_inflated zero_marMarried
#> 8 Inf 1.016859e-01 zero_inflated zero_phd
# }