A tidier for models generated with multgee::nomLORgee()
or multgee::ordLORgee()
.
Term names will be updated to be consistent with generic models. The original
term names are preserved in an "original_term"
column.
Arguments
- x
(
LORgee
)
Amultgee::nomLORgee()
or amultgee::ordLORgee()
model.- conf.int
(
logical
)
Whether or not to include a confidence interval in the tidied output.- conf.level
(
numeric
)
The confidence level to use for the confidence interval (between0
ans1
).- ...
Additional parameters passed to
parameters::model_parameters()
.
Details
To be noted, for multgee::nomLORgee()
, the baseline y
category is the
latest modality of y
.
See also
Other custom_tieders:
tidy_broom()
,
tidy_parameters()
,
tidy_vgam()
,
tidy_with_broom_or_parameters()
,
tidy_zeroinfl()
Examples
# \donttest{
library(multgee)
#> Loading required package: gnm
h <- housing
h$status <- factor(
h$y,
labels = c("street", "community", "independant")
)
mod <- multgee::nomLORgee(
status ~ factor(time) * sec,
data = h,
id = id,
repeated = time,
)
mod |> tidy_multgee()
#> term estimate std.error conf.level conf.low conf.high
#> 1 (Intercept) 1.66073121 0.25026 0.95 1.1702306 2.15123179
#> 2 factor(time)6 -1.87010328 0.31876 0.95 -2.4948614 -1.24534516
#> 3 factor(time)12 -2.92505659 0.36829 0.95 -3.6468917 -2.20322145
#> 4 factor(time)24 -2.81358954 0.34258 0.95 -3.4850340 -2.14214508
#> 5 sec -0.53680111 0.33704 0.95 -1.1973874 0.12378515
#> 6 factor(time)6:sec -1.18218145 0.46036 0.95 -2.0844705 -0.27989243
#> 7 factor(time)12:sec 0.07915600 0.48306 0.95 -0.8676242 1.02593621
#> 8 factor(time)24:sec 0.03272988 0.46558 0.95 -0.8797902 0.94524991
#> 9 (Intercept) 1.16643489 0.26273 0.95 0.6514935 1.68137622
#> 10 factor(time)6 -0.25454473 0.30080 0.95 -0.8441019 0.33501244
#> 11 factor(time)12 -0.57052156 0.31176 0.95 -1.1815599 0.04051681
#> 12 factor(time)24 -1.04101141 0.30716 0.95 -1.6430339 -0.43898887
#> 13 sec -0.10704331 0.34759 0.95 -0.7883072 0.57422057
#> 14 factor(time)6:sec -1.62341648 0.41349 0.95 -2.4338420 -0.81299097
#> 15 factor(time)12:sec -2.04850478 0.44543 0.95 -2.9215315 -1.17547803
#> 16 factor(time)24:sec -1.04965297 0.41831 0.95 -1.8695255 -0.22978044
#> statistic df.error p.value original_term y.level
#> 1 6.63594 Inf 3.224410e-11 beta10 street
#> 2 -5.86682 Inf 4.442325e-09 factor(time)6:1 street
#> 3 -7.94235 Inf 1.983862e-15 factor(time)12:1 street
#> 4 -8.21301 Inf 2.157116e-16 factor(time)24:1 street
#> 5 -1.59271 Inf 1.112253e-01 sec:1 street
#> 6 -2.56797 Inf 1.022960e-02 factor(time)6:sec:1 street
#> 7 0.16386 Inf 8.698414e-01 factor(time)12:sec:1 street
#> 8 0.07030 Inf 9.439549e-01 factor(time)24:sec:1 street
#> 9 4.43974 Inf 9.006762e-06 beta20 community
#> 10 -0.84623 Inf 3.974244e-01 factor(time)6:2 community
#> 11 -1.83000 Inf 6.724994e-02 factor(time)12:2 community
#> 12 -3.38916 Inf 7.010709e-04 factor(time)24:2 community
#> 13 -0.30796 Inf 7.581128e-01 sec:2 community
#> 14 -3.92613 Inf 8.632351e-05 factor(time)6:sec:2 community
#> 15 -4.59898 Inf 4.245645e-06 factor(time)12:sec:2 community
#> 16 -2.50925 Inf 1.209878e-02 factor(time)24:sec:2 community
mod2 <- ordLORgee(
formula = y ~ factor(time) + factor(trt) + factor(baseline),
data = multgee::arthritis,
id = id,
repeated = time,
LORstr = "uniform"
)
mod2 |> tidy_multgee()
#> term estimate std.error conf.level conf.low conf.high
#> 1 beta10 -1.843153449 0.38929 0.95 -2.6061478 -1.08015907
#> 2 beta20 0.266916287 0.35013 0.95 -0.4193259 0.95315848
#> 3 beta30 2.231319749 0.36625 0.95 1.5134829 2.94915656
#> 4 beta40 4.525419750 0.42123 0.95 3.6998241 5.35101538
#> 5 factor(time)3 0.001404066 0.12183 0.95 -0.2373783 0.24018648
#> 6 factor(time)5 -0.361715436 0.11395 0.95 -0.5850533 -0.13837754
#> 7 factor(trt)2 -0.512124154 0.16799 0.95 -0.8413785 -0.18286980
#> 8 factor(baseline)2 -0.669628138 0.38036 0.95 -1.4151200 0.07586376
#> 9 factor(baseline)3 -1.260703357 0.35252 0.95 -1.9516299 -0.56977685
#> 10 factor(baseline)4 -2.643726955 0.41282 0.95 -3.4528393 -1.83461462
#> 11 factor(baseline)5 -3.966126562 0.53164 0.95 -5.0081218 -2.92413131
#> statistic df.error p.value original_term
#> 1 -4.73464 Inf 2.194443e-06 beta10
#> 2 0.76235 Inf 4.458511e-01 beta20
#> 3 6.09237 Inf 1.112512e-09 beta30
#> 4 10.74338 Inf 6.366982e-27 beta40
#> 5 0.01152 Inf 9.908086e-01 factor(time)3
#> 6 -3.17433 Inf 1.501828e-03 factor(time)5
#> 7 -3.04855 Inf 2.299486e-03 factor(trt)2
#> 8 -1.76050 Inf 7.832307e-02 factor(baseline)2
#> 9 -3.57628 Inf 3.485184e-04 factor(baseline)3
#> 10 -6.40414 Inf 1.512193e-10 factor(baseline)4
#> 11 -7.46020 Inf 8.639124e-14 factor(baseline)5
# }