Marginal Predictions at the mean with effects::allEffects()
Source: R/marginal_tidiers.R
tidy_all_effects.Rd
Use effects::allEffects()
to estimate marginal predictions and
return a tibble tidied in a way that it could be used by broom.helpers
functions.
See vignette("functions-supported-by-effects", package = "effects")
for
a list of supported models.
Arguments
- x
(a model object, e.g.
glm
)
A model to be tidied.- conf.int
(
logical
)
Whether or not to include a confidence interval in the tidied output.- conf.level
(
numeric
)
The confidence level to use for the confidence interval (between0
ans1
).- ...
Additional parameters passed to
effects::allEffects()
.
Details
By default, effects::allEffects()
estimate marginal predictions at the mean
at the observed means for continuous variables and weighting modalities
of categorical variables according to their observed distribution in the
original dataset. Marginal predictions are therefore computed at
a sort of averaged situation / typical values for the other variables fixed
in the model.
For more information, see vignette("marginal_tidiers", "broom.helpers")
.
Note
If the model contains interactions, effects::allEffects()
will return
marginal predictions for the different levels of the interactions.
See also
Other marginal_tieders:
tidy_avg_comparisons()
,
tidy_avg_slopes()
,
tidy_ggpredict()
,
tidy_marginal_contrasts()
,
tidy_marginal_predictions()
,
tidy_margins()
Examples
# \donttest{
df <- Titanic |>
dplyr::as_tibble() |>
tidyr::uncount(n) |>
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
mod <- glm(
Survived ~ Class + Age + Sex,
data = df, family = binomial
)
tidy_all_effects(mod)
#> variable term estimate std.error conf.low conf.high
#> 1 Class 1st 0.5481319 0.03259139 0.4838117 0.6108835
#> 2 Class 2nd 0.3047099 0.03088545 0.2477413 0.3683636
#> 3 Class 3rd 0.1701399 0.01556823 0.1417601 0.2028582
#> 4 Class Crew 0.3397182 0.01922242 0.3031143 0.3783425
#> 5 Age Adult 0.2877415 0.01134968 0.2660183 0.3104882
#> 6 Age Child 0.5387134 0.05844277 0.4241446 0.6493334
#> 7 Sex Female 0.7406740 0.02264426 0.6938988 0.7825415
#> 8 Sex Male 0.2025252 0.01029278 0.1830988 0.2234490
tidy_plus_plus(mod, tidy_fun = tidy_all_effects)
#> # A tibble: 8 × 17
#> term variable var_label var_class var_type var_nlevels contrasts
#> <chr> <chr> <chr> <chr> <chr> <int> <chr>
#> 1 1st Class Class character categorical 4 contr.treatment
#> 2 2nd Class Class character categorical 4 contr.treatment
#> 3 3rd Class Class character categorical 4 contr.treatment
#> 4 Crew Class Class character categorical 4 contr.treatment
#> 5 Adult Age Age character dichotomous 2 contr.treatment
#> 6 Child Age Age character dichotomous 2 contr.treatment
#> 7 Female Sex Sex character dichotomous 2 contr.treatment
#> 8 Male Sex Sex character dichotomous 2 contr.treatment
#> # ℹ 10 more variables: contrasts_type <chr>, reference_row <lgl>, label <chr>,
#> # n_obs <dbl>, n_event <dbl>, estimate <dbl>, std.error <dbl>,
#> # conf.low <dbl>, conf.high <dbl>, label_attr <chr>
# }