Skip to contents

Class used by the package prevR

Slots

clusters

data.frame with observed data (one line per cluster). Columns names are:

  • "id" cluster ID.

  • "x" longitude.

  • "y" latitude.

  • "n" number of valid observations per cluster.

  • "pos" number of positive cases per cluster.

  • "prev" observed prevalence (in %) in the cluster (pos/n).

  • "wn" (optional) sum of weights of observations per cluster.

  • "wpos" (optional) sum of weights of positive cases per cluster.

  • "wprev" (optional) weighted observed prevalence (in %) in the cluster (wpos/wn).

  • "c.type" (optional) cluster type.

boundary

object of class sf::sf, borders of the studied area.

proj

object of class sf::crs, map projection used.

rings

list of results returned by rings(). Each entry is composed of 3 elements: N, minimum number of observations per ring; R, maximum radius of rings and estimates, a data frame with the following variables:

  • "id" cluster ID.

  • "r.pos" number of positive cases inside the ring.

  • "r.n" number of valid observations inside the ring.

  • "r.prev" observed prevalence (in \

  • "r.radius" ring radius (in kilometers if coordinates in decimal degrees, in the unit of the projection otherwise).

  • "r.clusters" number of clusters located inside the ring.

  • "r.wpos" (optional) sum of weights of positive cases inside the ring.

  • "r.wn" (optional) sum of weights of valid observations inside the ring.

  • "r.wprev" (optional) weighted observed prevalence (in %) inside the ring (r.wpos/r.wn).

Note: the list rings is named, the name of each element is NN_value.RR_value, for example N300.RInf.

Objects from the Class

Objects of this class could be created by the function as.prevR().

Methods

as.data.frame

signature(x = "prevR") converts an object of class prevR into a data frame.

as.SpatialGrid

signature(object = "prevR") generates a spatial grid.

export

signature(object = "prevR") exports a prevR object as a shapefile, a dbase file or a text file.

idw

signature(formula = "ANY", locations = "prevR") calculates a spatial interpolation using an inverse distance weighting.

kde

signature(object = "prevR") estimates a prevalence surface using kernel density estimators.

krige

signature(formula = "ANY", locations = "prevR") calculates a spatial interpolation by kriging.

plot

signature(x = "prevR", y = "ANY") plots data of a prevR object.

print

signature(x = "prevR") shows a summary of a prevR object.

rings

signature(object = "prevR") calculates rings of equal number of observations and/or equal radius.

show

signature(object = "prevR") shows a summary of a prevR object.

summary

signature(object = "prevR") shows a summary of the variables of a prevR object.

changeproj

signature(object = "prevR") changes the map projection used.

Examples

showClass("prevR")
#> Class "prevR" [package "prevR"]
#> 
#> Slots:
#>                                                   
#> Name:    clusters   boundary       proj      rings
#> Class: data.frame         sf        crs       list

col <- c(
  id = "cluster",
  x = "x",
  y = "y",
  n = "n",
  pos = "pos",
  c.type = "residence",
  wn = "weighted.n",
  wpos = "weighted.pos"
)
dhs <- as.prevR(fdhs.clusters, col, fdhs.boundary)
str(dhs)
#> Formal class 'prevR' [package "prevR"] with 4 slots
#>   ..@ clusters:'data.frame':	401 obs. of  10 variables:
#>   .. ..$ id    : int [1:401] 1 10 100 101 102 103 104 105 106 107 ...
#>   .. ..$ x     : num [1:401] -1.21 -1.79 -2.29 -2.71 -1.96 ...
#>   .. ..$ y     : num [1:401] 7.29 6.13 5.96 6.04 5.12 ...
#>   .. ..$ n     : num [1:401] 23 22 22 28 21 21 11 24 23 15 ...
#>   .. ..$ pos   : num [1:401] 0 0 0 0 3 4 0 1 0 0 ...
#>   .. ..$ c.type: Factor w/ 2 levels "Rural","Urban": 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ wn    : num [1:401] 19.8 19.8 20.2 20.2 20.2 ...
#>   .. ..$ wpos  : num [1:401] 0 0 0 0 2.88 ...
#>   .. ..$ prev  : num [1:401] 0 0 0 0 14.3 ...
#>   .. ..$ wprev : num [1:401] 0 0 0 0 14.3 ...
#>   ..@ boundary:Classes ‘sf’ and 'data.frame':	1 obs. of  1 variable:
#>   .. ..$ geometry:sfc_POLYGON of length 1; first list element: List of 1
#>   .. .. ..$ : num [1:4056, 1:2] 1.28 1.25 1.23 1.22 1.22 ...
#>   .. .. ..- attr(*, "class")= chr [1:3] "XY" "POLYGON" "sfg"
#>   .. ..- attr(*, "sf_column")= chr "geometry"
#>   .. ..- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: 
#>   .. .. ..- attr(*, "names")= chr(0) 
#>   .. ..- attr(*, "valid")= logi TRUE
#>   ..@ proj    :List of 2
#>   .. ..$ input: chr "+proj=longlat +datum=WGS84"
#>   .. ..$ wkt  : chr "GEOGCRS[\"unknown\",\n    DATUM[\"World Geodetic System 1984\",\n        ELLIPSOID[\"WGS 84\",6378137,298.25722"| __truncated__
#>   .. ..- attr(*, "class")= chr "crs"
#>   ..@ rings   : list()
print(dhs)
#> Object of class 'prevR'
#> Number of clusters: 401
#> Number of observations: 8000
#> Number of positive cases: 810
#> The dataset is weighted.
#> 
#> National prevalence: 10.12%
#> National weighted prevalence: 10.16%
#> 
#> Projection used: +proj=longlat +datum=WGS84
#> 
#> Coordinate range
#>        min     max
#> x -5.37750  3.6850
#> y  4.80326 14.1225
#> 
#> Boundary coordinate range
#>      xmin      ymin      xmax      ymax 
#> -5.518916  4.736723  3.851701 15.082593 

if (FALSE) { # \dontrun{
dhs <- rings(fdhs, N = c(100, 300, 500))
str(dhs)
print(dhs)
} # }