Skip to contents

[Deprecated] This function is deprecated. Use instead tidy_marginal_predictions() with the option newdata = "marginalmeans".

Usage

tidy_marginal_means(x, conf.int = TRUE, conf.level = 0.95, ...)

Arguments

x

(a model object, e.g. glm)
A model to be tidied.

conf.int

(logical)
Whether or not to include a confidence interval in the tidied output.

conf.level

(numeric)
The confidence level to use for the confidence interval (between 0 ans 1).

...

Additional parameters passed to marginaleffects::marginal_means().

Details

Use marginaleffects::marginal_means() to estimate marginal means and return a tibble tidied in a way that it could be used by broom.helpers functions. See marginaleffects::marginal_means()() for a list of supported models.

marginaleffects::marginal_means() estimate marginal means: adjusted predictions, averaged across a grid of categorical predictors, holding other numeric predictors at their means. Please refer to the documentation page of marginaleffects::marginal_means(). Marginal means are defined only for categorical variables.

For more information, see vignette("marginal_tidiers", "broom.helpers").

Examples

if (FALSE) { # interactive()
# Average Marginal Means

df <- Titanic |>
  dplyr::as_tibble() |>
  tidyr::uncount(n) |>
  dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
mod <- glm(
  Survived ~ Class + Age + Sex,
  data = df, family = binomial
)
tidy_marginal_means(mod)
tidy_plus_plus(mod, tidy_fun = tidy_marginal_means)

mod2 <- lm(Petal.Length ~ poly(Petal.Width, 2) + Species, data = iris)
tidy_marginal_means(mod2)
}