This function does not cover lavaan
models (NULL
is returned).
Usage
model_get_weights(model)
# Default S3 method
model_get_weights(model)
# S3 method for class 'svyglm'
model_get_weights(model)
# S3 method for class 'svrepglm'
model_get_weights(model)
# S3 method for class 'model_fit'
model_get_weights(model)
Note
For class svrepglm
objects (GLM on a survey object with replicate weights),
it will return the original sampling weights of the data, not the replicate
weights.
See also
Other model_helpers:
model_compute_terms_contributions()
,
model_get_assign()
,
model_get_coefficients_type()
,
model_get_contrasts()
,
model_get_model()
,
model_get_model_frame()
,
model_get_model_matrix()
,
model_get_n()
,
model_get_nlevels()
,
model_get_offset()
,
model_get_pairwise_contrasts()
,
model_get_response()
,
model_get_response_variable()
,
model_get_terms()
,
model_get_xlevels()
,
model_identify_variables()
,
model_list_contrasts()
,
model_list_higher_order_variables()
,
model_list_terms_levels()
,
model_list_variables()
Examples
mod <- lm(Sepal.Length ~ Sepal.Width, iris)
mod |> model_get_weights()
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [149] 1 1
mod <- lm(hp ~ mpg + factor(cyl) + disp:hp, mtcars, weights = mtcars$gear)
mod |> model_get_weights()
#> [1] 4 4 4 3 3 3 3 4 4 4 4 3 3 3 3 3 3 4 4 4 3 3 3 3 3 4 5 5 5 5 5 4
mod <- glm(
response ~ stage * grade + trt,
gtsummary::trial,
family = binomial
)
mod |> model_get_weights()
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 38 39 40 41
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 62 63 64 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 140 141 142 143 144
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 145 146 147 148 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 166 167 168 169 170 171 172 173 174 175 176 177 178 180 181 182 183 184 185 186
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> 187 188 189 190 191 192 193 194 196 197 198 199 200
#> 1 1 1 1 1 1 1 1 1 1 1 1 1
mod <- glm(
Survived ~ Class * Age + Sex,
data = Titanic |> as.data.frame(),
weights = Freq,
family = binomial
)
mod |> model_get_weights()
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#> 0 0 35 0 0 0 17 0 118 154 387 670 4 13 89 3 5 11 13 0
#> 21 22 23 24 25 26 27 28 29 30 31 32
#> 1 13 14 0 57 14 75 192 140 80 76 20
d <- dplyr::as_tibble(Titanic) |>
dplyr::group_by(Class, Sex, Age) |>
dplyr::summarise(
n_survived = sum(n * (Survived == "Yes")),
n_dead = sum(n * (Survived == "No"))
)
#> `summarise()` has grouped output by 'Class', 'Sex'. You can override using the
#> `.groups` argument.
mod <- glm(cbind(n_survived, n_dead) ~ Class * Age + Sex, data = d, family = binomial)
mod |> model_get_weights()
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#> 144 1 175 5 93 13 168 11 165 31 462 48 23 0 862 0