Compute a matrix of terms contributions
Source:R/model_compute_terms_contributions.R
model_compute_terms_contributions.Rd
Used for model_get_n()
. For each row and term, equal 1 if this row should
be taken into account in the estimate of the number of observations,
0 otherwise.
Usage
model_compute_terms_contributions(model)
# Default S3 method
model_compute_terms_contributions(model)
See also
Other model_helpers:
model_get_assign()
,
model_get_coefficients_type()
,
model_get_contrasts()
,
model_get_model()
,
model_get_model_frame()
,
model_get_model_matrix()
,
model_get_n()
,
model_get_nlevels()
,
model_get_offset()
,
model_get_pairwise_contrasts()
,
model_get_response()
,
model_get_response_variable()
,
model_get_terms()
,
model_get_weights()
,
model_get_xlevels()
,
model_identify_variables()
,
model_list_contrasts()
,
model_list_higher_order_variables()
,
model_list_terms_levels()
,
model_list_variables()
Examples
if (FALSE) { # interactive()
mod <- lm(Sepal.Length ~ Sepal.Width, iris)
mod |> model_compute_terms_contributions()
mod <- lm(hp ~ mpg + factor(cyl) + disp:hp, mtcars)
mod |> model_compute_terms_contributions()
mod <- glm(
response ~ stage * grade + trt,
gtsummary::trial,
family = binomial,
contrasts = list(
stage = contr.sum,
grade = contr.treatment(3, 2),
trt = "contr.SAS"
)
)
mod |> model_compute_terms_contributions()
mod <- glm(
response ~ stage * trt,
gtsummary::trial,
family = binomial,
contrasts = list(stage = contr.poly)
)
mod |> model_compute_terms_contributions()
mod <- glm(
Survived ~ Class * Age + Sex,
data = Titanic |> as.data.frame(),
weights = Freq, family = binomial
)
mod |> model_compute_terms_contributions()
d <- dplyr::as_tibble(Titanic) |>
dplyr::group_by(Class, Sex, Age) |>
dplyr::summarise(
n_survived = sum(n * (Survived == "Yes")),
n_dead = sum(n * (Survived == "No"))
)
mod <- glm(cbind(n_survived, n_dead) ~ Class * Age + Sex, data = d, family = binomial)
mod |> model_compute_terms_contributions()
}