Get / Set value labels
val_labels(x, prefixed = FALSE)
val_labels(x, null_action = c("unclass", "labelled")) <- value
val_label(x, v, prefixed = FALSE)
val_label(x, v, null_action = c("unclass", "labelled")) <- value
get_value_labels(x, prefixed = FALSE)
set_value_labels(
.data,
...,
.labels = NA,
.strict = TRUE,
.null_action = c("unclass", "labelled")
)
add_value_labels(
.data,
...,
.strict = TRUE,
.null_action = c("unclass", "labelled")
)
remove_value_labels(
.data,
...,
.strict = TRUE,
.null_action = c("unclass", "labelled")
)
A vector or a data.frame
Should labels be prefixed with values?
for advanced users, if value = NULL
,
unclass the vector (default) or force/keep haven_labelled
class
(if null_action = "labelled"
)
A named vector for val_labels()
(see haven::labelled()
) or
a character string for val_label()
. NULL
to remove the labels (except
if null_action = "labelled"
).
For data frames, it could also be a named list with a vector of value
labels per variable.
A single value.
a data frame or a vector
name-value pairs of value labels (see examples)
value labels to be applied to the data.frame,
using the same syntax as value
in val_labels(df) <- value
.
should an error be returned if some labels
doesn't correspond to a column of x
?
val_labels()
will return a named vector.
val_label()
will return a single character string.
set_value_labels()
, add_value_labels()
and remove_value_labels()
will
return an updated copy of .data
.
get_value_labels()
is identical to val_labels()
.
set_value_labels()
, add_value_labels()
and remove_value_labels()
could be used with dplyr syntax.
While set_value_labels()
will replace the list of value labels,
add_value_labels()
and remove_value_labels()
will update that list
(see examples).
set_value_labels()
could also be applied to a vector / a data.frame column.
In such case, you can provide a vector of value labels using .labels
or
several name-value pairs of value labels (see example).
Similarly, add_value_labels()
and remove_value_labels()
could also be
applied on vectors.
v <- labelled(
c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA),
c(yes = 1, no = 3, "don't know" = 9)
)
val_labels(v)
#> yes no don't know
#> 1 3 9
val_labels(v, prefixed = TRUE)
#> [1] yes [3] no [9] don't know
#> 1 3 9
val_label(v, 2)
#> NULL
val_label(v, 2) <- "maybe"
v
#> <labelled<double>[10]>
#> [1] 1 2 2 2 3 9 1 3 2 NA
#>
#> Labels:
#> value label
#> 1 yes
#> 3 no
#> 9 don't know
#> 2 maybe
val_label(v, 9) <- NULL
v
#> <labelled<double>[10]>
#> [1] 1 2 2 2 3 9 1 3 2 NA
#>
#> Labels:
#> value label
#> 1 yes
#> 3 no
#> 2 maybe
val_labels(v, null_action = "labelled") <- NULL
v
#> <labelled<double>[10]>
#> [1] 1 2 2 2 3 9 1 3 2 NA
val_labels(v) <- NULL
v
#> [1] 1 2 2 2 3 9 1 3 2 NA
if (require(dplyr)) {
# setting value labels
df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 1, 2)) %>%
set_value_labels(
s1 = c(Male = "M", Female = "F"),
s2 = c(Yes = 1, No = 2)
)
val_labels(df)
# updating value labels
df <- df %>% add_value_labels(s2 = c(Unknown = 9))
df$s2
# removing a value labels
df <- df %>% remove_value_labels(s2 = 9)
df$s2
# removing all value labels
df <- df %>% set_value_labels(s2 = NULL)
df$s2
# example on a vector
v <- 1:4
v <- set_value_labels(v, min = 1, max = 4)
v
v %>% set_value_labels(middle = 3)
v %>% set_value_labels(NULL)
v %>% set_value_labels(.labels = c(a = 1, b = 2, c = 3, d = 4))
v %>% add_value_labels(between = 2)
v %>% remove_value_labels(4)
}
#> <labelled<integer>[4]>
#> [1] 1 2 3 4
#>
#> Labels:
#> value label
#> 1 min