R/clustering.R
best.cutree.Rd
This function calculates the best partition to cut a dendrogram based on
the higher relative loss of inertia criteria. This criteria was originaly
proposed by the HCPC
function of the package
FactoMineR
.
best.cutree(hc, min = 3, max = 20, loss = FALSE, graph = FALSE, ...)
a clustering tree (an object of class hclust
, dendrogram
or agnes
)
the minimum number of classes
the maximum number of classes
if TRUE
, will return the relative loss of inertia of each partition instead of the best partition
if TRUE
, will plot the relative loss of inertia of each partition, the best partition being indicated in black and the second best in grey
additional arguments sent to plot
(if graph = TRUE
)
hc <- hclust(dist(USArrests), "ave")
best.cutree(hc)
#> [1] 3
best.cutree(hc, loss = TRUE)
#> 3 4 5 6 7 8 9 10
#> 0.9162296 0.9204839 0.9390592 0.9468502 0.9445603 0.9455332 0.9447788 0.9428372
#> 11 12 13 14 15 16 17 18
#> 0.9478849 0.9517658 0.9509931 0.9486210 0.9462873 0.9454169 0.9430228 0.9450606
#> 19 20
#> 0.9452040 0.9456931
best.cutree(hc, graph = TRUE)
#> [1] 3
best.cutree(hc, graph = TRUE, min = 6, max = 15)
#> [1] 10