R/clustering.R
best.cutree.RdThis function calculates the best partition to cut a dendrogram based on
the higher relative loss of inertia criteria. This criteria was originaly
proposed by the HCPC function of the package
FactoMineR.
best.cutree(hc, min = 3, max = 20, loss = FALSE, graph = FALSE, ...)a clustering tree (an object of class hclust, dendrogram or agnes)
the minimum number of classes
the maximum number of classes
if TRUE, will return the relative loss of inertia of each partition instead of the best partition
if TRUE, will plot the relative loss of inertia of each partition, the best partition being indicated in black and the second best in grey
additional arguments sent to plot (if graph = TRUE)
hc <- hclust(dist(USArrests), "ave")
best.cutree(hc)
#> [1] 3
best.cutree(hc, loss = TRUE)
#> 3 4 5 6 7 8 9 10
#> 0.9162296 0.9204839 0.9390592 0.9468502 0.9445603 0.9455332 0.9447788 0.9428372
#> 11 12 13 14 15 16 17 18
#> 0.9478849 0.9517658 0.9509931 0.9486210 0.9462873 0.9454169 0.9430228 0.9450606
#> 19 20
#> 0.9452040 0.9456931
best.cutree(hc, graph = TRUE)
#> [1] 3
best.cutree(hc, graph = TRUE, min = 6, max = 15)
#> [1] 10